Non-linear Pitch Modification in Voice Conversion Using Artificial Neural Networks
نویسندگان
چکیده
Majority of the current voice conversion methods do not focus on the modelling local variations of pitch contour, but only on linear modification of the pitch values, based on means and standard deviations. However, a significant amount of speaker related information is also present in pitch contour. In this paper we propose a non-linear pitch modification method for mapping the pitch contours of the source speaker according to the target speaker pitch contours. This work is done within the framework of Artificial Neural Networks (ANNs) based voice conversion. The pitch contours are represented with Discrete Cosine Transform (DCT) coefficients at the segmental level. The results evaluated using subjective and objective measures confirm that the proposed method performed better in mimicking the target speaker’s speaking style when compared to the linear modification method.
منابع مشابه
Design of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کاملApplication of Linear Regression and Artificial NeuralNetwork for Broiler Chicken Growth Performance Prediction
This study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ANN) in broiler chicken. Artificial neural networks (ANNs) are powerful tools for modeling systems in a wide range of applications. The ANN model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...
متن کاملReal-time voice conversion using artificial neural networks with rectified linear units
This paper presents an approach to parametric voice conversion that can be used in real-time entertainment applications. The approach is based on spectral mapping using an artificial neural network (ANN) with rectified linear units (ReLU). To overcome the oversmoothing problem a special network configuration is proposed that utilizes temporal states of the speaker. The speech is represented usi...
متن کاملVoice Conversion using Convolutional Neural Networks
The human auditory system is able to distinguish the vocal source of thousands of speakers, yet not much is known about what features the auditory system uses to do this. Fourier Transforms are capable of capturing the pitch and harmonic structure of the speaker but this alone proves insufficient at identifying speakers uniquely. The remaining structure, often referred to as timbre, is critical...
متن کاملOn the convergence speed of artificial neural networks in the solving of linear systems
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper is a scrutiny on the application of diverse learning methods in speed of convergence in neural networks. For this aim, first we introduce a perceptron method based on artificial neural networks which has been applied for solving a non-singula...
متن کامل